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SUMMARY
Intratumor heterogeneity (ITH) represents a major challenge for anticancer therapies. An integrated, multidi-
mensional, multiregional approach dissecting ITH of the clear cell renal cell carcinoma (ccRCC) tumor
microenvironment (TME) is employed at the single-cell level with mass cytometry (CyTOF), multiplex immu-
nofluorescence (MxIF), and single-nucleus RNA sequencing (snRNA-seq) and at the bulk level with whole-
exome sequencing (WES), RNA-seq, and methylation profiling. Multiregional analyses reveal unexpected
conservation of immune composition within each individual patient, with profound differences among pa-
tients, presenting patient-specific tumor immune microenvironment signatures despite underlying genetic
heterogeneity from clonal evolution. Spatial proteogenomic TME analysis using MxIF identifies 14 distinct
cellular neighborhoods and, conversely, demonstrated architectural heterogeneity among different tumor re-
gions. Tumor-expressed cytokines are identified as key determinants of the TME and correlate with clinical
outcome. Overall, this work signifies that spatial ITH occurs in ccRCC, which may drive clinical heterogeneity
and warrants further interrogation to improve patient outcomes.
INTRODUCTION

The intricate interplay between kidney cancer cells and the sur-

rounding tumor microenvironment (TME) contributes to the

marked genetic intratumor heterogeneity (ITH) of clear cell renal

cell carcinoma (ccRCC), which is thought to underlie tumor evo-

lution, metastasis, and clinical responses to various therapies

(Dı́az-Montero et al., 2020; Krishna et al., 2021). Recent studies

show the utilization of whole-exome sequencing (WES) to un-

cover evolution patterns, the mutational profile underlying ITH,

clonal architecture, and interpatient tumor differences (Hsieh

et al., 2017; Motzer et al., 2020a; Ricketts et al., 2018; Turajlic

et al., 2018). Notably, multiregion DNA sequencing revealed

that two common ccRCC aberrations, del(3p) and ampl(5q),

are the first genetic events in kidney cancer development (Rick-

etts and Linehan, 2018) and suggests that clonal architecture

divides ccRCC tumors into three evolutionary trajectories corre-

lated with clinical outcome (Turajlic et al., 2018). Although immu-

notherapy has dramatically improved the clinical outcomes of

ccRCC patients, and the combination of ipilimumab and nivolu-

mab is FDA approved for frontline metastatic ccRCC (Gao and
This is an open access article under the CC BY-N
McDermott, 2018), the differences observed in patient re-

sponses cannot be explained by genetic heterogeneity alone

(Banchereau et al., 2021; Motzer et al., 2020b).

Uncovering the underlyingmolecular and cellular mechanisms

of this observed clinical heterogeneity, particularly the role of the

TME,may lead to improved patient outcomes. Sequencing tech-

nologies cannot reveal spatial architecture to decode cell-to-cell

interactions, limiting our understanding of the complex tumor

ecosystem in kidney cancer (Bi et al., 2021; Braun et al., 2021;

Krishna et al., 2021). Single-cell pathology has recently shown

promise for understanding the clinical behavior of breast and

colorectal cancers (Jackson et al., 2020; Sch€urch et al., 2020).

Furthermore, how genetic and epigenetic (DNA methylation)

events control the formation of individual tumor ecosystems re-

mains unclear, with some links established betweenBAP1muta-

tions and the formation of an immune-enriched TME and PBRM1

mutation enrichment in non-inflamed clusters (Liu et al., 2020;

Motzer et al., 2020b).

Here, we utilized diverse methods to characterize the ITH,

microenvironment composition, spatial architecture, and cellular

neighborhoods of multiregion ccRCC tumor tissues to uncover
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specificities in tumor behavior linked with patient response and

the formation of complex ecosystems across different regions

of the same tumor. Integration of diverse methods for analysis

provides further insights into the epigenetic control of transcrip-

tion through DNA methylation and gene expression levels

measured at bulk and single-cell levels.

RESULTS

Multiregional single-cell proteogenomic assessment of
ccRCC heterogeneity
To comprehensively analyze the ITH, the TME, and the tumor

ecosystem at cellular, molecular, and spatial levels of ccRCC,

primary tumors collected from six patients with varying clinical

outcomes and therapeutic interventions (Figures 1A and 1B)

were biopsied at multiple locations and subjected to cytometry

by time of flight (CyTOF), multiplex immunofluorescence (MxIF)

in conjunction with artificial intelligence (AI) algorithm-based dig-

ital pathology, WES, RNA sequencing (RNA-seq), single-nucleus

RNA-seq (snRNA-seq), and whole genome bisulfite sequencing

(WGBS), enabling integrated multiregion multiproteogenomic

analysis (Figures 1B and S1A–S1C). The regions selected were

significantly distant from one another, allowing geographically

distinct regions to be analyzed separately (Figures 1B and

S1B). Patient 117 (Pt117), Pt120, and Pt154 had metastatic dis-

ease and were treated with ipilimumab and nivolumab, while

Pt107, Pt124, and Pt181 had localized disease resulting in a ne-

phrectomy. The ccRCC tumors were primarily grade 3 (33%) or 4

(50%) and tumor stage T3a (50%) or T3b (33%), except for one

T2a. Among the three patients treated with immune checkpoint

blockade (ICB), Pt117 achieved a complete response, Pt120

was a partial responder, and Pt154 was a non-responder with

disease progression. Machine learning (ML) platforms (STAR

Methods) were employed for all analyses, and integration of all

methods and the determination of the drivers of tumor behavior

and clinical responses to therapy were performed (Figure S1A).

CyTOF analysis revealed striking similarity in immune
cell composition across different regions
To determine whether heterogeneity of the TME manifests in

alterations of immune cell composition, multiregional CyTOF

(Figure S1D; Table S1) was performed (Chevrier et al., 2017).

Interestingly, CyTOF analyses revealed similarity in cellular

composition across different regions within the same patient’s

tumor, while individual patient tumors were distinctly different

from one another, with notable heterogeneity in immune cell pro-

portions between patients (Figure 1C). For example, T cell and

myeloid populations ranged from 3% to 83% and 6% to 81%

among patients, respectively (Figure 1D). Remarkably, CyTOF

analyses showed that each patient’s tumor regions clustered

together based on cellular contents (Figure 1C), indicating low

ITH in immune cell composition but large interpatient differ-
Figure 1. Multiregion ccRCC tumor immune cell composition determin

(A) Schematic of treatment history.

(B) Primary ccRCC tumor images (reproduced) of the selected biopsy locations

(C) t-distributed stochastic neighbor embedding (t-SNE) projections of the major

(D) Bar graphs of each patient’s major cell-type differences per region (21 samp
ences. These findings also suggest that each patient has his or

her own immune composition signature, as characterization of

the major immune populations showed intratumor similarities

in cellular composition (Figure 1C); only slight differences were

shown among multiregion tumors of a few patients. The tumor

regions of Pt154 had different relative tumor cell contents,

with the highest number of tumor cells in the A4 region (41% of

total cell composition; Figures 1C and 1D). While region A3 of

Pt181 primarily comprised CD8 T cells (68%), the other two re-

gions had much lower levels of CD8 T cells (15% and 9%)

(Figures 1C and 1D). In addition, differences in the percentages

of neutrophils (Pt117 and Pt181) and endothelial cells (Pt181)

were observed among the regions. Lastly, Pt117 had varied

cell types in the tumor regions and the highest proportion of B

cells in all of the tumor regions compared with the other patients

(Figures 1C and 1D). Overall, these analyses showed marked

interpatient cellular heterogeneity but not strong ITH in cellular

composition in each tumor region of the same patient (Figures

S2A and S2B).

In-depth cellular phenotypic analysis identified
numerous cell subpopulations conserved across
regions
Further characterization of the subpopulations and TME within

each tumor region using phenograph-based clustering of major

cell populations (Figure S1D; Table S1) identified 14CD4+ T cells,

13 CD8+ T cells, and 10 myeloid subpopulations across the

ccRCC tumors (Figures 2A–2C), showing marked heterogeneity

in the immune cells comprising the TME across patients. Based

on the expression of CD45RA, CCR7, IL-7R, CD27, IL-2R

(CD25), FoxP3, CD57, and granzyme B (GRB), subpopulations

of conventional memory (TCM), effector memory (TEM), effector

(TEF), cytotoxic GRZB+ (Cyto), and regulatory T cells (Tregs)

were identified (Figures 2B, 2C, S2C–S2E). PD-1, CD69, and

CD38 markers primarily defined level 2 subpopulations for CD8

and CD4 T cells (Figure 2C).

The subpopulations for CD8 and CD4 T cells and mono-

cytes were quantified per tumor region for each patient

(Figure 2D). As expected, percentages of naive cells were

negligible for tumor tissue (Ruf et al., 2015). TCM (CCR7+)

and TEM (CCR7�) cells were observed in all patients (Fig-

ure 2D), representing one-half of the T cell population. In

different regions, from 4% to 80% of CD8 T cells and up to

10% of CD4 T cells were classified as cytotoxic (GRB,

CD57+), suggesting the presence of active immune processes

within tumor tissue. Among all T cells, approximately 50% of

CD4 and CD8 T cells expressed PD-1 and were distributed

across all subtypes except TCM. The percentage of CD69+

T cells was increased across all patients, the majority of which

may represent tissue-resident T cells. Up to 5% of TEFs ex-

pressed high PD-1+ (Figure S2D) and CD69+ (TEX PD-1+),

which are a potential exhausted population of both CD4 and
ed by CyTOF

(A1–A4).

cell populations across the tumor regions for each patient (n = 6).

les from six patients). See also Figures S1 and S2 and Table S1.
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Figure 2. CyTOF analysis revealed a diverse set of cellular subpopulations conserved across regions
(A) CyTOF analysis of major cell populations and their subpopulations.

(B) t-SNE plots of level 1 and 2 subpopulations of CD4 and CD8 T cells and myeloid cells.

(C) Heatmap of the 30 markers across all cells depicting level 1 and 2 cell subpopulations.

(D) Bar graphs of each patient’s relative content of level 1 CD4 and CD8 T cells and myeloid cells per region (21 samples from six patients).

(E) Frequencies of the most variable CD4 and CD8 T cells and macrophage subpopulations per patient (n = 6). In the boxplots, the upper whisker indicates the

maximum value or 75th percentile + 1.5 interquartile range (IQR); the lower whisker indicates the minimum value or 25th percentile � 1.5 IQR.

(F) Clustermap with normalized [0–1] percentages of CD4 and CD8 T cells and myeloid subpopulations; dendrograms represent hierarchical clustering of

subpopulations (rows) and regions (columns) (21 samples from six patients). See also Figures S1 and S2 and Table S1.
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CD8 T cells. Interestingly, the proportion of CD4 Tregs was

similar across patients (about 15%).

The percentages of CD4 memory T cell subsets were similar

within a patient’s tumor regions but differed compared with other

patients (Figures 2D and 2E). For example, CD69� CCR7+ IL-7R+

CD4+ TCMs were different in tumor regions for Pt120 and Pt124

(Figure 2D). Interestingly, all patients possessed CD38� Tregs,
4 Cell Reports 40, 111180, August 16, 2022
whileCD38+Tregswerenot found inPt107andPt124 (FigureS2E).

CD4memory T cells were present in all patients, but CD8memory

T cell subpopulations were different between all patients (Fig-

ure 2D). Notable differences were also seen in the proportion of

the TEF PD-1+ CD69+ CD38+ CD8 T cells (Figure 2E) and different

subsets of cytotoxic GRZ+ CD57+ CD45RA�, GRZ+ CD57+

CD45RA+, and GRZ+ CD57low CD56+ CD8 T cells (Figure S2E).
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Figure 3. MxIF showed intratumor similarity across regions but substantial heterogeneity among patients

(A) Schematic overview of the automated ML-based cell segmentation pipeline (STAR Methods).

(B) Pseudo-color images of selected ccRCC intratumor regions. Scale bar, 100 mm.

(C) Heatmap of 19 markers across all cell segments measured by MxIF (77 ROIs, 10 samples from four patients).

(D) t-SNE plot of cell segments derived fromMxIF analysis; cells are colored according to six major cell populations and expression levels of markers (10 samples

from four patients).

(E) Representative images of ccRCC intratumor and tumor margin areas showing comparison of cell typing with MxIF imaging analysis (5 samples from four

patients). Scale bar, 100 mm.

(legend continued on next page)
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Myeloid populations were subclassified primarily based on the

expression of CD14, CD163, CD68, Mac-1, CD11c, CD86, HLA-

DR, PD-L1, CD141, and LAMP1, and included tissue classical

(CD16�) and non-classical monocytes (CD16+), classical dendritic

cells (cDCs) (CD141+), and various macrophage populations pre-

dominantly expressing PD-L1 (Figures 2D and 2E). Populations

ofmacrophages expressingCD163orCD68 together represented

more than 50% of the total number of myeloid cells.

A population of LAMP+ macrophages, known cytokine pro-

ducers, was also found (Figure 2C). Interestingly, CD163+ PD-

L1+ macrophages (M2 PD-L1) had similar proportions across

the majority of patients (Figure 2D). In contrast, cell types such

as TCM CD4 T cells, TEM CD38+ CD8 T cells, and CD16 mono-

cytes showed interpatient differences (Figure 2E). Indeed, there

was low interregion ITH, but marked interpatient heterogeneity,

across these multiregion ccRCC tumors (Figure 2F). Interest-

ingly, ICB-responsive Pt117 and Pt120 clustered together, sug-

gesting similar TME signatures.

As our tumor dissociation method adapted for CyTOF was

optimized at analyzing the tumor immune microenvironment,

the tumor cell and stromal populations were low, hindering our

ability to truly assess the tumor ecosystem. To provide spatial

resolution of the tumor ecosystem and direct cell-to-cell com-

munications, we used MxIF imaging of intact tumor tissue to

analyze the different tumor regions.
Large-scale multiplex imaging analysis showed low ITH
in tumor immune composition across regions but
substantial heterogeneity among patients
Spatial ITH of ccRCC tumorswas investigated (Figures 3A and 3B)

with MxIF (Figures S1E and S3; Table S2). We employed ML-

based segmentation (STAR Methods), resulting in the single-cell

proteomic dataset of 860,000 intact cells from 10 regions of four

patients (Figures 3C and 3D). Using a clustering approach similar

to that applied in the CyTOF analysis, cellular populations per pa-

tientwere identified basedon the expressionpatterns of antibody-

based markers: malignant ccRCC cells (CAIX+, PCK26+,

NAKATPASE+), B cells (CD45+ CD20+), various T cell populations

(CD45+ CD3+), endothelial cells (CD31+), macrophages (CD11c+

HLA DR+ CD206+/CD68+), monocytes (CD11c+ HLA DR+

CD16+), and dendritic cells (DCs; CD11c) (Figures 3C and 3D).

The ML-based segmentation pipeline identified tumors with

marked spatial tumor heterogeneity in immune infiltration (Fig-

ure 3E). Cells were typed at two major tumor locations: intratumor

regions and tumor margins (Figure S4). For example, in Pt117, in-

tratumor and tumormargin regionswere highly infiltrated byCD4�

andCD8�Tcells;Pt107andPt124hadmuch lowerTcelldensityat

the tumor margins (Figures 3E and 3F).

Pt107 and Pt124 showed the highest vascularization with

endothelial cells calculated as a surface mask (Figures 3E and
(F) Boxplots showing the relative cell-type percentage for tumor lesions and mar

relative area of the CD31 marker mask. In the boxplots, the right whisker indicate

whisker indicates the minimum value or 25th percentile � 1.5 IQR.

(G) Relative content of cell types (segments) identified per region per patient (10

(H) T cell subpopulation analysis for A2 region of Pt117; a single dot represents a

(I) Relative percentages of T cell subpopulations per region per patient (10 sample

Methods.
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3F). Notably, most regions within the same patients had no sig-

nificant differences in the area of endothelial cells at either

intratumor regions or margins, whereas in Pt124 there was a dif-

ference at the endothelial cell content between two tumor re-

gions (Figure 3F). Overall, differences in the relative contents of

macrophages, CD4� and CD8� T cells, and B cells were noted

among intratumor regions in all patients. For Pt117, the greatest

amount of T cells was found in the A3 region (37% of total cells

versus 17% in the 117-A1 and 24% in the 117-A2 region; Fig-

ure 3G). Notably, Pt120 had a high proportion of macrophages

and moderate amounts of T cells in all three regions. Tumor

margin cellular composition analysis of all three regions of

Pt117 detected significant infiltration by immune cells, especially

CD4� and CD8� T and B cells (Figure 3F).

To further characterize the cellular subpopulations within each

tumor region, additional functional markers were analyzed,

including GRB, the immune activation marker, and the prolifera-

tionmarker Ki67. Proliferating Ki67+CD4� andCD8� T cells were

identified in three regions of Pt117 and one region (A1) of Pt120;

cytotoxic GRB+ CD8 T cells were identified in select regions of

Pt117 and Pt120 (Figures 3H and 3I). In Pt117, no significant dif-

ferences in the relative contents of proliferating Ki67+ CD4 and

CD8 T cells were found between all three tumor regions. Regions

of Pt117 and Pt120 differed in the presence of T cell subpopula-

tions, with five detected in regions A2 and A1, respectively (Fig-

ure 3I). Interestingly, activation markers, such as proliferation

and GRB expression, were more prevalent in Pt117 and Pt120,

who experienced responses to ICB.

Overall, based on MxIF imaging analyses of cellular composi-

tions and the TME, only minimal differences in the major cellular

populations among intratumor regions were found in the ccRCC

samples. Altogether, low ITH in immune composition was

observed using both CyTOF and MxIF.
Multiple technologies correlated in determining the
cellular composition of the TME
Surprising similarities identified in cellular composition among

distant tumor regions by CyTOF and MxIF led us to perform a

comprehensive inter-method comparison of the TME cellular

composition using orthogonal technologies. snRNA-seq anal-

ysis of the same biopsies identified six cellular populations out

of 27,000 sequenced cells (Figure 4A), including major TME

cell types. In all samples, malignant ccRCC cells comprised

more than 70% of all cells (Figure 4B), which is similar to the

MxIF analysis, where malignant cells comprised approximately

50%–80% of the tumor regions (Figure 3G).

Further assessment of cellular heterogeneity used two addi-

tional methodologies that can differentiate the cell types present

in a tumor: deconvolution of bulk RNA-seq using a custom

algorithm (Zaitsev et al., 2022) (Figure 4C; Table S3) and
gins (10 samples from four patients); endothelial cell content is presented as a

s the maximum value or 75th percentile + 1.5 interquartile range (IQR); the left

samples from four patients).

distinct event.

s from four patients). See also Figures S3 and S4 and Table S2 related to STAR
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deconvolution from DNA methylation data (Figure 4D) by

MethylCIBERSORT. Although the relative percentages of im-

mune cell composition were largely concordant among the five

methods (Figure 4E), the cumulative immune cell percentages

varied across the different methods, as the immune TME of

Pt117 and Pt120 mainly consisted of T cells and macrophages,

respectively (Figure 4F). Among all methods, the highest correla-

tions were between CyTOF and bulk RNA-seq deconvolution

(⍴ = 0.82 and p < 0.001) and MxIF and bulk RNA-seq deconvolu-

tion (⍴ = 0.84 and p < 0.001) (Figure 4G). Moreover, MxIF and

CyTOF (⍴ = 0.83 and p < 0.001), as well as bulk RNA-seq decon-

volution and methyl-seq deconvolution (⍴ = 0.85 and p < 0.001),

showed a strong correlation in TME composition prediction (Fig-

ure 4G). In addition to the immune cell content within the TME,

the percentage of endothelial cells, inferred by RNA-seq and

MxIF, was also strongly correlated (Figure 4H); however, endo-

thelial cell prediction via deconvolution from bulk RNA-seq and

methyl-seq did not correlate (⍴ = 0.38 and p = 0.35). In contrast,

fibroblasts predicted by RNA-seq and methylation deconvolu-

tion were strongly correlated (Figure 4H), demonstrating that

these two technologies could assist in the estimation of fibro-

blasts, a marker of poor clinical outcome, including in ccRCC

(Bagaev et al., 2021).

Marked ITH was observed in the cellular neighborhood
and spatial architecture across different tumor regions
Cellular composition analysis alone provides no spatial informa-

tion regarding the intricate cellular communication among

different cell types within a complex tumor ecosystem that dic-

tates tumor behavior and treatment responses. To decode these

cellular interplays, we analyzed cell-to-cell interactions using

MxIF and categorized distinct cellular neighborhoods encom-

passing distinct sets of cells (Figure 5A). To perform community

analysis, we analyzed all available regions that were imaged for a

particular sample, including individual regions of interest (ROIs)

(15 ROIs) for Pt107 and Pt117 and full slide images for Pt120

and Pt124 (Figure S1C). For each sample, the cells analyzed

were assigned to a neighborhood, resulting in a total of 14 neigh-

borhoods: five ccRCC malignant cell -enriched, six T cell en-

riched, one macrophage enriched, one B cell enriched, and

one endothelial cell enriched. Based on their biology, 11 of these

cellular neighborhoods were grouped into malignant ccRCC-

cell- and T-cell-enriched neighborhoods (Figures 5B and 5C).

Proximity neighborhoods with a high density of ccRCC malig-

nant cells interacting with macrophages and blood vessels, as

well as immune cells, were identified (N1–N5) (Figures 5C and

5D). Additional T-cell-enriched neighborhoods (N6–N11) were
Figure 4. Correlations of immune cell composition of the TME across

(A) Heatmap of 71 cell-type-specific markers based on snRNA-seq analysis of re

(B) snRNA-seq t-SNE plots showing cell populations per patient (7 samples from

(C) Left: heatmap of the cell-type-specific gene expression of 195 genes select

expression of 195 genes (Zaitsev et al., 2022) for each patient and region (8 sam

(D) Left: heatmap of the methylation levels of 2,043 CpG methylation sites select

2,043 CpG methylation sites for each patient and region listed (8 samples from t

(E) Relative contents of B and T cells and macrophages derived from each analy

(F) Relative cellular percentages per patient and region derived from each analys

(G) Spearman correlation in the enumeration of relative immune cell contents am

(H) Spearman correlation of the percentage of endothelial cells and fibroblasts c
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also found, including T cells enriched at the tumor margin (N9)

(Figures 5C and 5D).

The presence or absence of these different neighborhoods was

determined across tumor regionswithin the tumor (Figures 5E and

5F) and at the margin (Figure S5A), showing marked interpatient

heterogeneity in the immune cell interactions and neighborhoods

comprising the TME among all patients (Figure 5F). Indeed, within

the intratumor regions, the macrophage-enriched Pt120 had

approximately 10 diverse neighborhood regions, primarily con-

sisting of malignant ccRCC cells, macrophages, and CD4 and

CD8 T cells, which were different from those of the other three

patients (Figure 5F). Pt107 had the largest neighborhoods of inter-

acting blood vessels (N3) andmacrophages (N1, N2), with ccRCC

malignant cells in both tumor regions (N1–N3) (Figure 5F). The

variability among the tumors was associated with immune infiltra-

tion and immune enrichment in each tumor. Unlike cellular

composition, which displayed little ITH, marked ITH in cellular

neighborhoods was found in tumor regions from the same patient

both in the tumor lesion and at the tumor margins, which is most

strikingly apparent in Pt117 (Figures 5F and S5A). In the A1 region

within the tumor lesion of Pt117, the tumor tissue had the neigh-

borhoods of interacting blood vessels (N3) and macrophages

intermixed (N1, N2), with ccRCC malignant cells that were not

found in the A2 and A3 regions (Figure 5F); those regions were

similar, whereas region A1 was distinct according to cellular

neighborhoods (Figure S5B). In region A2 a T-cell- (N6, N7, N9–

N11) and macrophage-enriched (N12) neighborhood was identi-

fied within the tumor and at the tumor margin, which was not as

pronounced in the other regions. Notably, Pt117 had the highest

levels of B cells within the tumor in regions A2 and A3 and in the

tumor margin in region A2 (Figures 1C, 1D, 5E, 5F, and S5A), re-

sulting in the presence of tertiary lymphoid structures (TLSs; N13),

ectopic lymphoid organs that often arise in highly inflammatory

environments and are linked to better patient clinical outcomes

(Dieu-Nosjean et al., 2016). B-cell repertoire (BCR) analysis of to-

tal RNA-seq showed that regions A2 and A3 of Pt117 had a high

fraction of BCR reads in bulk RNA-seq (Figure S5C), confirming

TLS presence in N13. Further analysis showed that expanded

major immunoglobulin heavy chain (IGH) and immunoglobulin

kappa chain (IGK) clonotype families, comprising several BCR

clones that arose from hypermutation, caused a high fraction of

BCR reads (Figures S5D and S5E). Intriguingly, Pt117 had a

complete response to ICB, highlighting the potential role of both

B cells and TLSs in this response (Helmink et al., 2020; Simo-

naggio et al., 2021). Pt117 and Pt120, who both responded to

immunotherapy, possessed the T-cell-enriched N7 and N9

neighborhoods.
methods

gion A2 of Pt124.

three patients).

ed for RNA-seq deconvolution. Right: heatmap of the cell-type-specific gene

ples from three patients).

ed for deconvolution per cell type. Right: heatmap of the methylation levels of

hree patients).

sis method for all patients and regions (8 samples from three patients).

is method (8 samples from three patients).

ong the analysis methods (n = 5).

alculated using the listed methods (n = 5). See also Table S3.
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To further support the significance of the identified neighbor-

hoods, the non-randomness of cellular interactions was calcu-

lated using a permutation test (Jackson et al., 2020) (Figures 5G,

5H,andS5F). Interestingly,despite theneighborhoodheterogene-

ity of individual regions within tumors, cellular interactions

remainedsimilar across regions (Figures5HandS5F).Different re-

gions in Pt107 and Pt124 had a low proportion of immune cells

(Figure 5H). Pt117 had similar direct contacts in regions A1 and

A2 within the tumor lesion, and A2 and A3 were similar in the

margin areas (Figures 5H and S5F). Analysis of cellular neighbor-

hoods supports themarkedheterogeneity observed in all three re-

gions of Pt117 in both tumor lesions andmargin areas (Figures 5H

and S5F), showing that the formation of TLSs (N13) emphasizes

the observed heterogeneity. Regions in Pt120 that were enriched

with macrophages showed cellular interactions between macro-

phages and endothelial cells (N3), as well as macrophages and

T cells (N1–N2) (Figures 5F and 5H). Together, these results sug-

gest somewhat consistent tumor biology and cell behavior among

regions, supporting the idea that malignant ccRCC cells influence

the TME.

Subclonal genetic heterogeneity was associated with
methylation patterns and TME heterogeneity
To further uncover the underlying genetics that may influence

the observed heterogeneity among patients, the mutation,

chromosome, and methylation landscapes of the tumor regions

were studied (Figures 6A–6C). Mutations from bulk RNA-seq

(Figure 6A) were called to highlight expressed mutated proteins

and support mutation calls from WES, and somatic mutations

expressed in single tumor cells were identified using snRNA-

seq (Figures 6A and S6A). The proportion of tumor cells (purity)

measured by various methods correlated poorly (Figure S6B).

In Pt124, a decrease in 3p gene expression and an increase

in 5q gene expression were observed in tumor cells (Fig-

ure S6C), which correspond to a 3p deletion and 5q ampli-

fication. Mutations found at both DNA and RNA levels may

represent the core set of alterations driving tumor ecosystem

formation and spatial heterogeneity with the caveat of the

inability to find expressed mutated transcripts from mutations

driving nonsense-mediated decay or associated with losses

of the entire gene.

The mutations were divided into three groups based on their

clonality and presence in the different tumor regions (Figure 6A):

truncal, clonal in at least one region and present in all regions; re-

gionspecific, clonal in at least one regionandpotentially subclonal
Figure 5. Cellular neighborhoods and cell-to-cell interactions among t

(A) Cell-typing plot of cell-to-cell interactions; schematic overview of the graph-n

(B) Top: cell-typing plot of cellular neighborhoods (different colors). Bottom: t-SN

cell interactions graph (10 samples from four patients).

(C) Left: bubble heatmap of cell types identified in each neighborhood. Right: ba

patients).

(D) Cell-typing plots of the cell-to-cell interactions across the patients for each n

(E) Top: cell-typing plots of representative tumor regions of Pt107 and Pt117 s

proximity neighborhood plots for the same regions.

(F) Bar graphs showing the proportions of proximity neighborhoods identified by M

patients).

(G) Schematic diagram of the permutation test utilized to assess significance of

(H) Heatmaps showing statistically significant (non-random) cellular contacts for th
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in the other regions; and subclonal, present in any region (Fig-

ureS6D). Truncalmutationsweremostly foundbyall typesof anal-

ysis, whereas subclonal mutations were typically found only by

WES (Figure 6A). For each patient, we constructed a phylogenetic

tree with truncal and region-specific events (Figure 6D; STAR

Methods) and analyzed associations between genetic events

and TME composition inferred by multiple platforms (Figure 6D).

In Pt117, truncal nonsensemutations inBAP1andVHLwere iden-

tified in all three regions by WES and RNA-seq-based mutation

calling, as well as mutations in TET3 and USP20. Region-specific

mutations in HSPA6 and POLK were found in regions A1 and A3,

respectively, with a subclonal frameshift mutation in SET2D and a

missenseTP53mutation in regionA1 found byWESandRNA-seq

mutation calling (Figure 6A). Pt117 also displayed a hypermethy-

lated genome in region A1 (Figure 6C), with methylation at

PPP2R2C in all three regions and EPO methylation only in region

A1 (Figure 6D), a region primarily composed of macrophages

and T cells as well as macrophage-enriched neighborhoods (N1,

N2) (Figure 6D). Notably, the truncal BAP1mutation may underlie

the observed T cell enrichment in these regions (Brugarolas et al.,

2020). Pt120 showed a different mutation profile compared with

Pt117 and Pt124. Truncal CREBBP and PBRM1 missense muta-

tions were identified in all three regions with all three sequencing

platforms (WES, RNA-seq, and snRNA-seq), as well as TSC1

splice-site mutations in all regions, which are similar in composi-

tion and architecture (Figure 6A). Interestingly, the subclonal

TSC1 in-frame insertion mutation was not found in the A3 region

of Pt120 by WES; instead, RNA-seq-based mutation calling led

to its identification (Figure 6A). TACC1 methylation was also

observed in all three regions (Figure 6D). Moreover, the PBRM1

mutations identified in Pt120may underlie the high levels of angio-

genesis and lower T cell infiltration as reported (Braun et al., 2021)

(Figures 6A and 6D). Pt124 had a truncal missense VHLmutation

and PBRM1 and RHOB mutations in region A1 (Figure 6A). WES

analysis also identified SETD5 (region A1), KDM5C, and STAG2

(region 2) subclonal mutations, with hypermethylation in region

A1 (Figures 6A and 6C). Region A1 of Pt117 and Pt124 had the

highest whole-genome hypermethylation levels (Figure S6E) and

had mutations in SETD2 and SETD5 (Figure 6A), respectively,

which are lysine methyltransferases whose disruption may cause

genome-wide epigenetic changes (Cancer Genome Atlas

Research Network et al., 2013) and genome hypermethylation.

This hypothesis is supported by an analysis of the TCGA:

phs000178 cohort that showed that patients with SETD2 or

PBRM1 mutations have higher genome methylation levels
he different tumor regions of the same patient

etwork-based unsupervised clustering process.

E plot of cells clustered into neighborhoods (different colors) based on cell-to-

r plot of the relative cell percentage per neighborhood (10 samples from four

eighborhood.

howing immune cell composition and distribution of immune cells. Bottom:

xIF for tumor regions in Pt107, Pt117, Pt120, and Pt124 (10 samples from four

the computed cellular contacts.

e listed regions per patient (10 samples from four patients). See also Figure S5.
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Figure 6. Association of genetic heterogeneity with TME composition and production of inflammatory cytokines by malignant cells

(A) Oncoplots of identified variants called by WES, RNA-seq, and snRNA-seq per patient (8 samples from three patients).

(B) Copy number gains and losses per region per patient (8 samples from three patients).

(C) Methylation heatmap of the entire genome colored by 1-Mb bins per patient (8 samples from three patients).

(D) Trees of main mutational events that led to the genetic diversity of regions per patient. Branches represent potential driver mutations; the nodes/leaves show

the cellular composition of regions. Pie charts represent the ratio betweenmalignant and non-malignant cells; charts show the composition of non-malignant cells

calculated by CyTOF. Top four bar plots represent the cellular composition of regions calculated by CyTOF (8 samples from three patients), RNA-seq (8 samples

from three patients), snRNA-seq (7 samples from three patients), andmethylation (8 samples from three patients). Bottom bar plot representsMxIF cellular neigh-

borhood per patient (77 ROIs; 8 samples from three patients).

(E) Heatmap of gene expression of cytokines derived from RNA-seq (8 samples from three patients).

(F) snRNA-seq pseudo-bulk and bulk RNA-seq analysis scheme.

(legend continued on next page)
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(Figure S6F). The A1 region of Pt124 had the highest endothelial

cell content (Figure 6D), which may be linked to the identified

PBRM1mutation (Carril-Ajuria et al., 2019). Moreover, Pt124 had

a5qamplification,whichwasconsistentwithsnRNAcopynumber

alteration (CNA) findings (Figures 6B and S6C). Mutations found in

VHL, PBRM1, SETD2, andBAP1 cause heterogeneity among pa-

tients and affect individual therapy response for the treatments

(Hsieh and Cheng, 2020).

TME-associated cytokines are influenced by the
methylation patterns of malignant cells
To understand the driving factors underlying the observed inter-

patient heterogeneity in TME cellular populations and tumor ar-

chitecture, individual cytokine expression was assessed at the

transcriptional level using bulk RNA-seq (Figure 6E). Pt117,

who had large percentages of CD4 and CD8 T cell populations,

as well as B cells that formed TLSs (Figures 1C, 1D, 5E, S5D, and

S5E), had high expression of the pro-inflammatory cytokines

CXCL9, CXCL10, and CXCL11 (Figure 6E). Region A2 of Pt117,

with the highest immune infiltration, showed that the majority

of cytokines were associated with T cells and B cells (e.g.,

CCL4 [median-scaled score = 1.7], CXCL9 [median-scaled

score = 2.5], CXCL10 [median-scaled score = 2.1], CXCL11 [me-

dian-scaled score = 1.9], and CXCL13 [median-scaled score =

3]). CCL5 expression was also higher in immune-enriched

Pt117. All regions of Pt120, which were macrophage enriched

as shown by CyTOF and MxIF, demonstrated the highest

expression of the granulocyte-attracting chemokine CXCL5 of

all the patients. In regions A1 and A2 of Pt124, noted by high

endothelial cell content (Figure 3F) and the presence of blood

vessel communities (Figure S5A), the highest expression of

platelet-derived growth factor-D (PDGF-D) (Figure 6E), a potent

mitogenic factor known to be expressed in the kidney andwhose

expression may be inhibited by TGF-b signaling, was observed.

Based on the notable differences in cytokine expression

across all the patients determined by bulk RNA-seq analysis,

the cells controlling this differential cytokine expression were

narrowed down to immune microenvironment or tumor cell pop-

ulations based on snRNA-seq analyses (Figures 6F, 6G, and 6H).

First, we confirmed that the bulk RNA-seq and pseudo-bulk

snRNA-seq (all reads from snRNA-seq mixed together to imitate

bulk RNA-seq) (Figure 6F) expression analyses correlated,

demonstrating that comparative analyses could be imple-

mented. Samples from the same patient clustered together, after

scaling of all bulk samples and pseudo-bulk samples from tumor

and immune cells (Figure 6G). Based on the snRNA-seq results,

CXCL10 and CXCL11 were predominantly expressed by im-

mune cells, whereas other cytokines such as CCL4 and CCL5

were expressed by the malignant ccRCC cells (Figure 6I).
(G) Principal component analysis (PCA) of scaled gene expression of bulk RNA

patients) samples clustered by patients.

(H) Heatmaps of the scaled expression of 12 cytokines in bulk RNA-seq (8 sample

samples from three patients) expression.

(I) Boxplots showing the expression of eight cytokines from malignant cells (tumo

from three patients). In the boxplots, the upper whisker indicates the maximum va

the minimum value or 25th percentile � 1.5 IQR.

(J) Correlation plots of cytokine expression with single CpG methylation in the pr
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Several studies have demonstrated that epithelial cells in colo-

rectal cancer are also a major source of CCL4 (De la Fuente Ló-

pez et al., 2018). The expression of cytokines by ccRCC malig-

nant cells suggests that this expression may modulate the

composition and activity of specific TME and tumor spatial archi-

tecture via context-specific cytokines, similar to previously iden-

tified CCL5-CCR5 interactions in ccRCC (Gelbrich et al., 2017; Li

et al., 2018; Yoo et al., 2015; Zhou et al., 2020). Lastly, the

expression of several cytokines, including CCL5, inversely corre-

lated with CpG methylation at their respective promoter regions

(Figure 6J), linking their methylation with their expression. CCL5

andCXCL9 co-expression revealed immunoreactive tumorswith

prolonged survival and response to checkpoint blockade (Dan-

gaj et al., 2019). Intriguingly, in immune-enriched Pt117, the

CCL4 and CCL5 promoters had the lowest methylation level.

DNA methylation is a principal epigenetic mechanism negatively

regulating CCL5, in agreement with prior evidence in lung and

colon cancer (Dangaj et al., 2019; Li et al., 2014).

Cytokines correlate with the formation of cellular
neighborhoods and treatment outcome
To investigate if the differences in cytokine expression were

linked to the spatial tumor architecture as well as the formation

of distinct neighborhoods, we performed multiomics integrated

correlation analysis between proximity neighborhoods

measured by MxIF, the relative content of immune cell types

by CyTOF, and gene expression analysis using RNA-seq data

(Bagaev et al., 2021). Six highly correlated groups were identified

(Figure 7A). Group 1, the largest, consisting of immune inflamma-

tion in ccRCC samples and B-cell- (TLS) and T-cell-enriched

neighborhoods (Figure S7D; ROI 1), correlated with the relative

content of CD8+ TEM, CD8+ TEM PD-1+, B cells, and CD8

TCM, measured by CyTOF, as well as the expression of T-cell

traffic, B and T cells, checkpoint inhibition, and effector cell

gene signatures (Figures 7A and 7B). Specific T cell neighbor-

hoods also independently correlated with RNA expression of

CCL4 (r = 0.66) and CCL5 (r = 0.88) (Figure S7A).

Group 2 was associated with CD4 T helper cells; gene expres-

sion signatures in this cluster associated with T cell trafficking,

T cells, and Th1 and Th2 signatures correlated with the relative

content of CD4 TEM, CD4 TEM CD69+, CD4 TEF PD-1+, and

CD4Treg (CyTOF) (Figures7Aand7B).Themacrophage-enriched

group 3 (Figure S7C) included correlations between T cells and

CD4Tcells inparticular, and thegeneexpressionsignaturesasso-

ciated with macrophage and DC trafficking as well as pro-tumor

cytokines (Figures 7A and 7B). Another correlation was found in

group4betweenblood-vessel-enrichedproximity neighborhoods

(N1 and N3) and the expression of angiogenesis and endothelial

gene signatures (Figure S7A), which coincided with the relatively
-seq (8 samples from three patients) and snRNA-seq (7 samples from three

s from three patients) and tumor-only and non-malignant parts of snRNA-seq (7

r-only snRNA-seq) and immune cells (non-malignant snRNA-seq) (7 samples

lue or 75th percentile + 1.5 interquartile range (IQR); the lower whisker indicates

omoter region (8 samples from three patients). See also Figure S6.
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B

Figure 7. Intraregional TME and cellular neighborhoods are formed by the context of specific cytokine expression

(A) Clustermap of pairwise correlation between proximity neighborhoods by MxIF (eight samples from three patients), relative content of immune cell types by

CyTOF (eight samples from three patients), and gene expression signature by RNA-seq data (eight samples from three patients). Colors represent Pearson cor-

relation coefficient. Main correlation clusters are highlighted in white and supplemented with the numbers. Row and column annotation represents the analysis

methods used.

(legend continued on next page)
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high content of endothelial cells by CyTOF (Figures 7A and 7B).

Group 5 identified an association between T cell neighborhoods

N5 and N9 and Treg, natural killer (NK), matrix, and proliferation

genesignatures.NeighborhoodsN2andN12, comprisingmyeloid

cells, correlated with high percentages of macrophages, mono-

cytes, and DCs (group 6, Figures 7A and 7B).

Cytokine expression was also correlated with neighborhood

formation in these different tumors, resulting in five highly corre-

lated groups of cytokines, important ligands/receptors, and

neighborhoods (Figure 7C). In group A, CD8 T cells near malig-

nant cell neighborhoods (N7), T cells enriched in tumor margin

neighborhoods (N9), and B-cell-enriched neighborhoods (N13)

correlated with the expression of diverse cytokines such as

CCL4 (r = 0.66 for correlation with N7), CCL5 (r = 0.88 for corre-

lation with N9), and CXCL13 (r = 0.7 for correlation with N13)

(Figures 7C and S7A). Expression of CCL4 and CCL5 corre-

sponded to the presence of tumor infiltrating lymphocytes

(TILs), which is consistent with previous studies (Dangaj et al.,

2019). Notably, N7, N9, and N13 were identified only in patients

who responded to ICB (Figure 5F). Blood-vessel-enriched areas

(N1, N3, N14) correlated with VCAM1 (r = 0.84 for correlation with

N1) and VEGFA expression (r = 0.7 for correlation with N3) in

group D as well as TGF-B3 (r = 0.62 for correlation with N3),

ITGA9 (r = 0.53 for correlation with N3), and CXCL12 (r = 0.8

for correlation with N3) in group E (Figures 7C and S7A).

We further linked ccRCC clinical outcome and survival with

specific cytokines correlating with the different TME neighbor-

hoods and communities in three different cohorts: TCGA-

KIRC: phs000178 (n = 511), the JAVELIN: https://doi.org/10.

1038/s41591-020-1044-8 RCC clinical trial cohort (Motzer

et al., 2020a) comparing avelumab (anti-PD-L1) plus axitinib

(n = 354, ICB) with sunitinib (n = 372, tyrosine kinase inhibitor

[TKI]), and the IMmotion150: EGAS00001002928 cohort (McDer-

mott et al., 2018) comparing atezolizumab (anti-PD-L1) ± beva-

cizumab (n = 169, ICB) with sunitinib (TKI) (n = 89). A group A

gene signature was identified that correlated with response to

immunotherapy in the IMmotion150: EGAS00001002928 ICB

cohort (p = 0.001 to p = 0.0002; Figure 7D) and could somewhat

stratify survival in the JAVELIN: https://doi.org/10.1038/

s41591-020-1044-8 ICB cohort by tumor-only derived cytokines

CCL4 and CCL5 (p = 0.02). Notably, CCL5 expression alone

significantly stratified poor patient survival in the TCGA:

phs000178 cohort (p = 0.02) yet was associated with response

in IMmotion150: EGAS00001002928 ICB (p < 0.001, Figure S7B)

and survival in JAVELIN: https://doi.org/10.1038/s41591-020-

1044-8 ICB cohorts (p = 0.02, Figure S7B). CCL4 correlated

with response in the IMmotion150: EGAS00001002928 ICB

cohort (Figure S7B). High CXCL13 expression was associated
(B) Composition of the most important functional clusters in (A) and cell-typing p

region and tumor margin area.

(C) Clustermap of correlation between different proximity neighborhoods by MxIF

samples from three patients). Colors represent Pearson correlation coefficient. Ma

with the letters. Row and column annotation represents the analysis methods us

(D) Boxplots of the gene-signature-normalized single-sample gene set enrichmen

and tyrosine kinase inhibitor (TKI) (n = 372) JAVELIN: https://doi.org/10.1038/s41

(E) Association between progression-free survival and activity of cytokine groups A

doi.org/10.1038/s41591-020-1044-8 cohorts. Genes from cytokine groups were
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with immunotherapy response in the IMmotion150: EGAS000

01002928 cohort and the worst survival in TCGA patients

(p = 0.02) (Figure S7B). In contrast, the group D cytokines and

the combined groups D and E gene signature significantly

correlated with response to TKI (p = 0.01, 0.01) in the IMmo-

tion150: EGAS00001002928 (TKI) and stratified survival to TKI

(p = 0.0007, p = 0.0001) in the JAVLEIN: https://doi.org/10.

1038/s41591-020-1044-8 (TKI) cohorts (Figures 7D and 7E).

DISCUSSION

Significant ITH heterogeneity in ccRCC has impeded the applica-

tion of precision medicine strategies for kidney cancer patients

and may be responsible for the clinical differences in patient re-

sponses to treatments. We investigated the downstream effects

of this genetic heterogeneity on the tumor ecosystem, comprising

malignant ccRCC cells and their TME, using a multiplatform hier-

archical approach to dissect tumor behavior at the epigenetic,

genetic, transcriptomic, proteomic, and spatial levels of biopsies

collected from multiple tumor regions. Notably, we did not

observe marked ITH in immune microenvironment cellular

composition as measured by CyTOF and MxIF, suggesting that

subclonal genetic ITH does not dramatically alter the type of cells

comprising the TME. Instead, surprisingly, we found significant

ITH in the architecture of the TME across the different tumor re-

gions of the individual patients, specifically in the presence of

diverse cellular neighborhoods. The formation of the various

neighborhoods and dissimilarities in TME spatial architecture

have been linked to differences in the antitumor activity of tar-

geted and immunotherapy agents, potentially through variations

in drug distribution and residence of immune cells within the tu-

mor regions due to these differences in spatial organization

(Sch€urch et al., 2020). In our limited cohort, the only patient

(Pt117) who achieved a complete response to ICB had marked

spatial ITH, but all the tumor regions were immune enriched,

including the residence of a TLS, suggesting that in this very

limited sample size the presence of immune-enriched neighbor-

hoods and the lack of stroma-enriched areas determined

response to ICB. Evaluation of the cellular populations in the

context of the TME spatial architecture in larger cohorts will be

essential to validate the application of ITH in clinical practice.

The underlying genetic andmolecular drivers that sculpt the for-

mation of these distinct communities and neighborhoods were

also investigatedat the epigenetic, genetic, and expression levels.

A truncal nonsense mutation in BAP1 was identified in the im-

mune-enriched tumor regions of Pt117 consisting of high levels

of CD4 and CD8 T cells and B cells (TLS). BAP1 mutations have

been previously associated with increased immune infiltration in
lots corresponding to clusters showing the inflammation type within the tumor

(eight samples from three patients) and cytokine expression by RNA-seq (eight

in correlation clusters are highlighted by black dashed lines and supplemented

ed.

t analysis (ssGSEA) score in non-responders and responders in ICB (n = 354)

591-020-1044-8 cohorts.

, D, and D + E (shown in [D]) in ICB (n = 354) and TKI (n = 372) JAVELIN: https://

analyzed as a signature. See also Figure S7.
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kidneycancer (Wanget al., 2018) and immunogenicmicroenviron-

ments in various cancers (Shrestha et al., 2019; Souri et al., 2019),

potentially through the upregulation of different chemokines and

cytokines, including CXCL13. Here, we found that CXCL13

expression correlated with B-cell-enriched neighborhoods (TLS)

in the BAP1-mutant Pt117, further linking BAP1 mutations to

diverse immune-enriched microenvironments, including TLS for-

mation. Further, whole-genome methylation was higher in the A1

regions of Pt117 and Pt124 and possessed frameshift mutations

in chromatin remodeling genes (SETD2 and SETD5), which have

been shown to correlate with higher average methylation (Fig-

ure S7F) (Cancer Genome Atlas Research Network et al., 2013).

Interestingly, this work supports the idea that the ccRCC TME

composition and architecture is shaped by different genetic

drivers that act through changes in oncogenic signaling path-

ways to alter chemokine/cytokine signaling, directly influencing

patient therapeutic outcomes. We found that CCL4 and CCL5

cytokines are directly expressed by malignant cells, potentially

due to changes in the methylation profile of their promoters,

and that this expression correlated with the formation of spatial

CD8 T cells near malignant cells (N7) or at the tumor margin

(N9) and the presence of high percentages of PD-1+ CD8

T cells. Although we were not able to identify an underlying ge-

netic regulation of methylation changes, this finding suggests

that examining cytokine-mediated cell trafficking to the tissue

is crucial to elucidating the formation of specific tumor spatial or-

ganization patterns that have an impact on clinical outcomes.

Overall, this work highlights the importance of understanding

all facets of tumor biology to meaningfully identify the underlying

factors responsible for different responses and outcomes to

therapies. While notable ITH at the genomic and tumor cellular

composition levels was not observed, variations in spatial tumor

architecture may be a contributing factor to heterogeneous re-

sponses to therapy of an individual patient. Indeed, chemo-

kine-based signatures, the building blocks of these diverse

neighborhoods, architectures, and tumor ecosystems, and spe-

cifically, the expression of T cell trafficking-associated cytokines

controlled bymethylation, directly correlated with ccRCCpatient

response to immunotherapy across large cohorts, most likely

promoting antitumor activity by stimulating immune infiltration

to create immune-enriched tumor ecosystems. These results

demonstrate that MxIF analysis of an entire tissue section is a

powerful method to study the morphology of a resected ccRCC

tumor and can further be applied to other cancer types to better

understand ITH as a predictor of variability in clinical outcomes.

In cancer types with high ITH (e.g., prostate cancer) or low tumor

purity (e.g., pancreatic cancer), tumor resection and analysis of

the entire tissue section are necessary for efficient spatial anal-

ysis. In other solid cancer types, such as breast cancer, lung

adenocarcinoma, gastric cancer, colon cancer, and ovarian can-

cer, two tissue samples with core sizes of 2 mm are sufficient to

perform cell-to-cell interaction analysis and extrapolate theMxIF

analysis to the entire tissue (Jackson et al., 2020).

In future studies, coupling this MxIF analysis with CyTOF will

enable investigation of not only the spatial architecture, and thus

the location of immune cells, but also the functions of the immune

cells. Further combination of MxIF and CyTOF methods with pro-

teogenomic and transcriptomic analyses, as demonstrated in this
study, allows for an even more comprehensive understanding of

a patient’s tumor and can provide additional insights into the highly

varied treatment outcomes associated with a specific cancer.

Dissection of the ITH of the complex tumor ecosystem resulting

from this integrated approach can be a powerful biomarker of

response to therapies,ultimatelyhelping to improveprecisionmed-

icine strategies for patients with ccRCC and other cancer types.

Limitations of the study
The main limitation of this work is the small number of patients

included in the study. The results from the limited number of sam-

ples that show spatial ITH in ccRCC require further validation in

meta-cohorts to demonstrate the contribution of the spatial archi-

tecture to the clinical heterogeneity seen in clinical outcomes.

While the results showing the correlation of cytokines in the

different TME neighborhoods with ccRCC clinical outcome and

survival were validated in three large cohorts (Figure 7), future pro-

spective studieswill be essential to demonstrate the usefulness of

this technology in clinical decision-making. Another limitation is

the use of only primary ccRCC samples in this study. Evaluating

metastatic sampleswill help us understand if a difference in tumor

heterogeneity is observed between primary and metastatic sam-

ples, and if the tumor biology of the metastatic samples plays a

role in clinical response and survival outcomes.
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Data and code availability
Data: Detailed code, along with associated datasets and documentation are available at https://github.com/BostonGene/

Multiregional_ccRCC.

Code: All original code has been deposited at https://github.com/BostonGene/Multiregional_ccRCC and is publicly available as of

the date of publication.

General statement: Any additional information required to reanalyze the data reported in this paper is available from the lead con-

tact, Nathan Fowler, upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study was approved by the Washington University Institutional Review Board. Informed consent was obtained from all patients

who provided samples for this work. Primary ccRCC tumors were collected from 6 patients. The detailed characteristics, including

gender and age, of the patients and samples are provided in Figure S1C. There were 3 female and 3male patients, with ages ranging

from 47 to 87 years old. One-half of the patients had metastatic diseases and were treated with ipilimumab and nivolumab, while the

other half had localized diseases and only received a nephrectomy. Overall, the ccRCC tumors were primarily grades 3 (33%) or 4

(50%) and tumor stages T3a (50%) or T3b (33%) except one T2a. Among the three patients treated with ipilimumab and nivolumab,

one patient achieved a complete response, one patient was a partial responder, and one patient was a non-responder with disease

progression.

METHOD DETAILS

CyTOF sample preparation
Single cell dissociation

Overall, fresh tumor tissue (100 mg) was minced into 3 mm pieces and mixed with enzymes obtained from human tumor cells using

the Tumor Dissociation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany). The automated cell dissociator (gentleMACSTM Dissocia-

tor, Miltenyi Biotec) was used to gently agitate the cells for disassociation for 1 h at 37 �C. Next, the red blood cells were removed

using the ACK Lysis Buffer (Lonza, Basel, Switzerland), and the remaining cell suspension was maintained in RPMI for CyTOF anti-

body staining.

CyTOF antibody staining

After dissociation, 13 105–1 x 106 tumor cells were incubated with Fc-receptor blocking solution (Invitrogen, Waltham, MA, USA) for

10 min at room temperature. Next, the cells were incubated with surface marker antibodies at the optimized concentrations

(Table S2) for 1 h on ice. The cells were then stained with 2.5 uM Cisplatin solution for 1 min at room temperature to identify the

dead cells. The cells were permeabilized using Foxp3/Transcription Factor Staining Buffer Set (eBioscience, San Diego, CA, USA)

for 30 min on ice. The permeabilized cells were then incubated with intracellular marker antibodies at the optimized concentrations

(Table S2) for 1 h on ice. The cells were stored in 4% PFA solution in 4 �C for up to 2 weeks until the CyTOF analysis. The cells were

stained with 125 uM Ir-intercalator (Fluidigm, San Francisco, CA, USA) at 1:3,000 dilution overnight before the CyTOF analysis.

Before acquisition, the samples were washed in MilliQ water and resuspended in 500 mL 1X solution of EQ Beads (Fluidigm). The

samples were analyzed in the CyTOF2/Helios (Fluidigm) mass cytometer by the The Immunomonitoring Laboratory (IML) Core in

the Center for Human Immunology and Immunotherapy Programs (CHiiPs) at Washington University in Saint Louis.
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CyTOF data analysis
Gating and quality control

After the CyTOF experimentation, the data (117-A1/A2/A3/A4, 120-A1/A2/A3, 124-A1/A2/A3, 107-A1/A2/A3/A4, 154-A1/A2/A3/A4,

181-A1/A2/A4) were analyzed using a gating strategy. Only viable cells were selected for subsequent analysis. Gating manipulation

was performed with FlowJo (FlowJo X 10.0.7r). After removing the beads, ‘‘live cell’’ events were selected by one-stage gating ac-

cording to their viability (cisplatin) and DNA signal.

Major cell population identification

All samples underwent bootstrapped clusterization, and the clusters were automatically annotated by correlation with the reference

sample (124-A1), which had been annotated manually. CyTOF signals were subjected to standard transformation (arcsine (x/5)).

Clusterization was performed with FlowSOM version 1.20.0 (Gassen et al., 2015), using the following parameters: xdim = 10,

ydim = 10; the number of clusters set to 30; and all other options set to default. Reference populations were acquired by clustering

of 124-A1 using 30 markers, resulting in 30 identified clusters that were then annotated into 9 cell types using the following list of

markers: CD8 T cells (SD45+, CD3+, CD8+, CD4-, CD56-), CD4 T cells (SD45+, CD3+, CD4+, CD8-, CD56-), NK cells (CD45+,

CD56+, CD16+), neutrophils (CD45+, CD66+, CD16+), macrophages/monocytes (CD45+, HLA-DR+, CD11c+, CD66b�), endothelium
(CD45- CD107a+ CAIX�), B cells (CD45+ CD19+CD38-), plasmatic cells (CD45+CD19+CD38+) andmalignant ccRCC cells (CAIX+). All

unidentified cells and cells with non-specific annotation were grouped as ‘‘other’’.

All samples were clustered with FlowSOM 30 times, each time with a 90% random cell subset, with all markers except viability and

DNA1/DNA2. For all samples, automated annotation was used. For each of the bootstrapped clusters, the vector of median marker

values across all cells was correlated with corresponding vectors in reference clusters. The tested cluster was annotated by a refer-

ence cluster with the highest Pearson correlation. If the highest correlation coefficient was less than 0.6 or two reference clusters had

a high correlation with the tested cluster, but the difference between correlation coefficients was lower than 0.05, the tested cluster

was set as ‘‘unidentified’’. As each cell participated in several runs of clusterization and were annotated several times, the final cell

type of each event was defined as the most frequent type in all clusterization runs.

Cell subpopulation identification

To identify cell subpopulations, the following steps were conducted: 1) batch correction of signals by quantile normalization within

each cell type; 2) bootstrapped clusterization of cell sets from all samples of eachmajor population; 3) additional clustering of clusters

to select the most stable groups; and 4) annotation of the clusters of cells.

Subpopulations were defined for four major populations (macrophages, CD4 T cells, CD8 T cells, and B cells). Clustering was per-

formed on a subset ofmarkers as follows: for CD4 andCD8 T cells - CD45RA, CCR7, IL-2R, IL-7Ra, FoxP3, CD57, GRB, CD27, CD69,

PD-1 CD38; for macrophages and monocytes - CD14, CD11c, Mac-1, HLA-DR, CD16, CD163, CD68, CD4, CD38, PD-L1, CD86,

LAMP1, and CD69.

For batch correction, quantile normalization within a cell type was performed. For each marker in every sample and every popu-

lation, only cases with raw CyTOF signals >20 (linear scale) were considered. Expression levels were normalized by the 95th percen-

tile of the sample/marker/population combination. After that, the levels were multiplied by the average 95th percentile for marker/

population combination. Cells were pooled across patients after normalization. Normalized data were subjected to hyperbolic trans-

formation (arcsine (x/5)) and bootstrapped FlowSOM clustering. FlowSOM version 1.20.0 was used for clusterization, with options

xdim = 10, ydim = 10, the number of metacluster set to 30, and the metaclustering strategy and all other options set to default.

We performed 200 iterations of clustering with 50% subsampling without replacement.

To select stable clusters across subsampled clusters, FlowSOM obtained 2003 30 = 6,000 clusters (from 200 iterations) that were

subsequently clustered by k-means, k = 20. Metaclusters were correlated to each other using a vector of median expression calcu-

lated across all cells. If the Pearson correlation was >0.95, the metaclusters were merged together. Clusters containing less than 2%

of cells were merged to the most similar one based on the Pearson correlation analysis of markers. Finally, clusters were annotated

with biologically meaningful labels.

MxIF imaging
Tissue preparation for histology and MxIF imaging

Fresh renal tissue specimens (kidney after resection and core needle biopsy) were handled carefully and appropriately fixed after

dissection with 10% formalin for 48 h at room temperature. Tissue specimens were dehydrated by immersing specimens in a series

of ethanol solutions of increasing concentration until water-free ethanol: 70% (1x), 80% (1x), 95% (1x), 100% (2x) for 1 h each. The

specimenswere then immersed in fresh-xylene (or xylene substitute) three times for 1.5 h each and in paraffinwax (58–60 ⁰C) twice for

2 h each. Next, the tissue specimens were embedded into paraffin blocks.

Histological examination

Samples were obtained and stored in 10% neutral-buffered formalin until examination. The tissues were embedded in wax,

sectioned, and stained using VIRTUAL HE. Virtually stained slides were evaluated by a pathologist, and the fibrotic area was defined

as an eosinophilic area of densely packed fibers. The fibrosis ratio for each specimen was calculated with ImageJ software. The tu-

mor area and intratumoral fibrotic areas were calculated using the area selection tool. Then, the percentage of fibrosis was assessed

using the ratio of fibrotic area to tumor area.
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MxIF staining

Tissue sections (5 mm thick) were cut from FFPE ccRCC tissue blocks using a microtome and then mounted onto SuperfrostTM Ultra

Plus adhesion slides for morphological examination andmultiplexed imaging analysis. Slide tissue sections were baked at 60 ⁰C in an

oven for 1 h. Tissue sections were deparaffinized with 2 washes of fresh-xylene and were then rehydrated with washes of ethanol

100% (2x), 95% (2x), 70% (2x), 50% (2x), 1X PBS (1x) and 0.3% Triton X-100 in 1X PBS (1x) and subjected to a two-step antigen

retrieval process. Next, the tissue sections underwent repeated cycles of staining, imaging and signal removal. The sections were

stainedwith antibodies directly conjugatedwith either Cy3 or Cy5 dye at a previously optimized concentration (Table S3). All antibody

mixes used for seven incubation rounds were incubated at room temperature for 1 h in a humid chamber. After incubation during all

rounds, the slides were washed in 1X PBS for 5 min (3X). The tissue sections were then stained with DAPI solution (1 ug/mL) for

15 min. The slides were washed with 1X PBS, and the coverslip was added immediately using mounting media.

MxIF imaging data analysis
Cell segmentation

Cell segmentation, which is the estimation of a position and shape of single cell on a fluorescent image slide, was performed using the

UNet semantic segmentation neural network and implemented with the Pytorch Python library with UnetResNet-101 (https://github.

com/sshuair/torchsat/tree/develop). Watershed post-processing of the identified cell masks was performed to reduce the under-

segmented cell counts using the OpenCV2 Python library. Training of the network was performed with manual image segmentation,

which consisted of three channels: DAPI, NaKaATPase, and S6, with a combination of binary cross entropy and DICE scores as loss

weighted equally, as described in Pachynski et al. (Pachynski et al., 2021). For each segmented cell, the expression of 20markers (19

antibodies plus DAPI; Table S2, Figures S1E, S3) was measured in addition to the spatial location of each cell.

Cell typing

Cell subtype assignment was performed using Phenograph cell clusterization by standardized mean marker intensity in a given cell

contour. Cell subtype assignment was guided by tSNE projection plots, allowing us to join similar cell subpopulation clusters. Cell

typing was visualized by drawing cell contours and coloring them according to cell types.

Overall, 8 major cell populations were obtained using the following list of markers: B cells (CD45+, CD19+, CD3-), CD4 T cells

(SD45+, CD3+, CD4+, CD8-, CD56-), CD8 T cells (SD45+, CD3+, CD8+, CD4-, CD56-), endothelial cells (CD31+, CD45-), myeloid cells

(CD45+, HLADR+, CD68+, CD206+, CD16+, CD11c+), malignant and epithelial cells (CAIX+, NAKATPASE+, PCK26). All unidentified

cells and cells with non-specific annotation were grouped as ‘‘other’’.

Cell subpopulation identification

T cell subpopulations were identified by applying linear thresholds in two-dimensional plots for various marker combinations (Fig-

ure 3H). CD4 and CD8 T cells were separated based on marker intensities in plots for CD4 vs CD8 markers. Granzyme B-positive

cells were identified in the CD8 vsGranzymeBmarker plot. Ki67-positive cells were identified in the Ki67 vs CD8marker plot. Thresh-

olds were identified manually based on data distribution for each tumor region.

Community analysis

Toperformcommunity detection,mutual arrangementsof cells usingDelaunay triangulation for the set of their centroids toobtain neigh-

borhoodgraphswere reconstructed. The upper limit for edge lengthwas set to 200 pixels. For each cell, we identified neighbors as cells

on the edges, obtaining neighborhood information in the form of a vector of cell classes and selected mask percentages for each cell.

Then, using the resulting graph, the DeepGraphInfomax graph convolutional neural network (from Pytorch Geometric python package)

was trained in an unsupervised manner to obtain 32-dimensional embedding of cell neighborhoods in vector form. After this transfor-

mation, neighborhoodvectorswereclusteredusing thek-meansalgorithm,obtaining14different neighborhoodclusters. For eachcom-

munity cluster, the percentage of cells within a cluster andmask percentage was calculated to facilitate community descriptions. Clus-

ters were grouped based on the dominant cell type proportion and morphological structures into two major groups: tumor-enriched

neighborhoods and T cell-enriched neighborhoods, as well as three separated clusters of macrophage-, B cell-, and blood vessel-en-

riched neighborhoods. Cell communities were visualized by drawing cell contours and coloring them according to each community.

Cell-to-cell interactions

Cellular neighborhood analysis was conducted using a graph neural network-encoding approach and K-Means clustering (Goltsev

et al., 2018) to identify individual neighborhoods encompassing similar types, proportions, densities, and distributions of cells. To

assess the significance of contacts between different cell types, cell neighborhood graphs obtained during community analysis

were reused. Then, the cell type labels in the graph were permuted multiple times to count and compare the number of contacts be-

tween permuted cell types with original distribution as described in Goltsev et al. (Goltsev et al., 2018). The proportion of permuted

cases with numbers of contacts greater than in the original showed significance. Results were presented as a p value for each cell

type pair for each sample. Cell-to-cell interactions were visualized on a schematic interaction graph of cell contacts.

Sequencing
WES

Each tumor and blood sample as the normal had a single enriched library constructed. Exome libraries were captured by IDT KAPA

Hyper libraries with xGen ExomeResearch Panel v1.0. The libraries were sequenced on aNovaSeq S4with at least 100x coverage for

tumor and 30x for normal.
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RNA-seq

TruSeq Stranded Total RNA (Illumina) was used for RNA library construction. The libraries were sequenced on a NovaSeq S4 with

100M reads/sample and a sequencing depth of 100 M reads (2 3 150 pairs).

WGBS

For WGBS, the ACCEL-NGS�METHYL-SEQ DNA LIBRARY KIT (Swift biosciences) was used, with a sequencing depth of 25X and

2 3 150 pairs snRNA-seq.

snRNA-seq

We conducted single-nucleus RNA-seq (snRNA-seq) on the same biopsies using the whole tissue by lysing the cell membrane and

isolating nuclei, potentially leading to the recovery of each cell from the tissue (Lake et al., 2019). In brief, 100 mg frozen tumor was

used for single nuclei dissociation. The dissociationmethodwasbasedonapreviously publishedprotocol (Wuet al., 2019). Fresh nuclei

were used for 103 5’SingleCell Library (50 GEXonly) construction. Librarieswere sequencedonaNovaSeqS4with 50K readpairs/cell.

Bioinformatics
NGS data quality control and analysis

Quality control of all NGS samples was performed using FastQC v0.11.5 (available online at: http://www.bioinformatics.babraham.

ac.uk/projects/fastqc/), FastQ Screen v0.11.1 (Wingett and Andrews, 2018), RSeQC v3.0.0 (Wang et al., 2012), MultiQC v1.6 (Ewels

et al., 2016). HLA genotypes were calculated from RNA-seq or WES using OptiType (Szolek et al., 2014). Sample correspondence

was checked using HLA comparison and the Conpair algorithm (Bergmann et al., 2016).

WES analysis: Alignment, variant calling, and mutation clonality identification

Low quality reads were filtered using FilterByTile/BBMap v37.90 and aligned to human reference genome GRCh38 (GRCh38.d1.vd1

assembly) using BWA v0.7.17 (Li and Durbin, 2009). Duplicate reads were removed using Picard’s v2.6.0 MarkDuplicates (‘‘Picard

Toolkit’’, 2019. Broad Institute, GitHub Repository; http://broadinstitute.github.io/picard/; Broad Institute), indels were realigned by

IndelRealigner and recalibrated by BaseRecalibrator and ApplyBQSR; tools were taken from GATK v3.8.1 (der Auwera and O’Con-

nor, 2020).

Somatic single nucleotide variations (sSNVs), small insertions and deletions were all detected using Strelka v2.9 (Saunders et al.,

2012). All variants, insertions and deletions were annotated using Variant Effect Predictor v92.1 (McLaren et al., 2016).

To calculate the clonality status of eachmutation, themathematical approach that identifies clonality status from VAF andmutation

copy number was employed.

Copy number alteration (CNA) analysis

FACETS v0.5.14 (Shen and Seshan, 2016) and a customized version of Sequenza v2.1.2 (Favero et al., 2015) were used as CNA cal-

lers with refinement and tuning to obtain better quality and speed of calculations. FACETSwas used to create a common input file for

both the CNA callers. Then, Sequenza generated a resulting file with coverage for each position in.pileup format. After the coverage

extraction stage, Sequenza and FACETS were run in parallel. Both the CNA callers generated the genome/chromosome plots and

output tables with segments and respective statistics (depth.ratio and BAF - for Sequenza; log-ratio and log-odds-ratio for FACETS)

with collected and analyzed copy numbers.

RNA-seq analysis
RNA-seq processing

RNA-seq reads were aligned using Kallisto v0.42.4 (Bray et al., 2016) to GENCODE v23 transcripts with default parameters. The pro-

tein-coding transcripts, IGH/K/L- and TCR-related transcripts were retained, and the noncoding RNA, histone- and mitochondria-

related transcripts were removed, resulting in 20,062 protein coding genes. Gene expression was quantified as transcripts per million

(TPM) and log2-transformed (Goldman et al., 2020).

Deconvolution of bulk RNA-seq

The recently-described machine learning algorithm, Kassandra, was used to predict cell percentages from bulk RNA-seq (Zaitsev et

al., 2022). The model consisted of a two-level hierarchical ensemble that used LightGBM as building blocks. The model was trained

on artificial RNA-seq mixtures of different cell types (T cells, B cells, NK, macrophages, cancer-associated fibroblasts, and endothe-

lium), obtained frommultiple datasets of sorted cells. All datasets satisfied the following criteria: isolated fromhuman tissue, poly-A or

total RNA-Seq performed with read length higher than 31 bp, have at least 4 million coding read counts, passed quality control by

FASTQC, no contamination detected (<2%). The model was trained to predict the percentage of RNA belonging to particular cell

types. The predicted percentages of RNA were later converted into percentages of cells using the methodology described by Racle

et al. (Racle et al., 2017).

T cell receptor/B cell receptor repertoire profiling

MIXCR v.2.1.7 (Bolotin et al., 2015) was used to analyze the RNA-seq samples. Single clonotypes were grouped into clones with a

distinct VDJ combination and identical CDR3 nucleotide sequences. For B cells, the clones were further aggregated into clone

groups if the VDJ combination was the same and if the CDR3 nucleotide sequences differed no more than 1 nt.

Gene signature score calculations

Correlation analysis was performed between gene expressions of single cytokinesmeasured by RNAseq and proximity communities

based on MxIF. Five high correlation groups were identified (A, B, C, D, and E). Gene signature scores were calculated using the
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single-sample gene set enrichment analysis (ssGSEA) algorithm in R package GSVA (Subramanian et al., 2005). Raw scores were

medium scaled to (�2, 2) or to (�3, 3) range.

snRNA-seq analysis
snRNA-seq processing

FASTQ files were processed using the kallisto bustools pipeline described in (Melsted et al., 2019). Empty droplets were filtered out

manually using rank filtration implemented in DropletUtils package (Lun et al., 2019). The distribution of genes per cell for each sam-

ple was bimodal. As the left mode was supposedly made of unfiltered droplets, we filtered out cells from the left mode and kept cells

from the right mode.

The scanpy python package (Wolf et al., 2018) was used to remove low-quality cells with high mitochondrial read count content

(>20%). An unsupervised approach to phenotype cells was employed as follows: data were jointly visualized by Uniform Manifold

Approximation and Projection (UMAP) (Becht et al., 2018), and Leiden graph-based clustering was performed as described in (Traag

et al., 2019). Batch correction was performed using Harmony (Korsunsky et al., 2019). T cells were identified by CD3E and CD3D

gene expression (CD4 T cells also express the CD4 gene, CD8 T cells by CD8A and CD8B), B cells by CD19 orMS4A1, macrophage

by CD163 and CSF2RA, malignant cells by CA9, endothelial cells by PECAM1, fibroblasts by COL1A1, and normal kidney cells by

SLC12A1.

Pseudo-bulk creation from snRNA-seq

The expression in each cell was normalized to reach 10,000 UMI counts, and the expression vectors of all cells in each sample were

summed. In Figure 7D, two gene signatures were used to show differences betweenmalignant and non-malignant pseudo-bulk: ‘Ma-

lignant’ signature - MYC, IFI27, APOC1, IRGM; ‘Immune cells’ signature - PDGFRB, MYO1F, CD6, IL10RA, BRCC3, IKZF1, FGFR2.

snRNA-seq CNA analysis

CNA analysis was performed for sample 124-A2 only because this sample had the highest data quality. Gene expression from the 3p

and 5q arms was averaged and scaled among cells. The resulting scores for 3p and 5q genes showed a lower 3p score in tumor cells

(showing 3p deletion) and higher 5q gene score in tumor cells (showing 5q amplification).

snRNA-seq mutation calling

The coverage of mutated positions from WES was assessed using the cellSNP (https://github.com/single-cell-genetics/cellSNP/

tree/master/test) tool applied to VCF files obtained frombulk DNA sequencing.Mutation information wasmapped back onto the visu-

alization tSNE plots.

WGBS analysis
WGBS preprocessing

Raw reads were aligned to reference genome hg38 using bismark v0.22.1 (Krueger and Andrews, 2011). Cytosines with read

coverage less than 10 were excluded from the assay. Cytosines were annotated using the annotatr R package (Cavalcante and

Sartor, 2017). CpG islands were identified based on the annotatr package, with genes region coordinates derived from biomart

and human enhancer coordinates derived from the FANTOM5 database (Andersson et al., 2014).

Methylation deconvolution

Illumina 450K microarray data were used as a reference: GSE35069 (Kennedy et al., 2018; Reinius et al., 2012) for immune subtypes

and methylation of TCGA samples with the highest purity for malignant cells. Differentially methylated cytosines (DMCs) were found

with MethylCIBERSORT (Chakravarthy et al., 2018) R package with the following parameters: minimal difference between average

methylation of groups was 20%, FDR cutoff of 0.01, and the maximum number of DMCs was 150. The cell composition ratio was

obtained by the EpiDISH R package (Zheng et al., 2019) with the CIBERSORT method.

Whole genome methylation profile and tumor whole genome hypermethylation level

Firstly, CpGs were aggregated in genomic windows of 106 nucleotides with 50% overlap with neighboring windows. Then, the win-

dow methylation was considered as the average methylation of CpGs related to windows. The genome hypermethylation level was

calculated as themeanmethylation of all windows. To calculate the whole genomemethylation level in TCGA data, meanmethylation

of all probes in the sample were calculated.

Correlation of methylation with gene expression

We calculated spearman correlation of mean DNA methylation of gene promoter CpG island with expression of gene. As most cy-

tokines had no CpG islands in the promoter region, we calculated the correlation of cytokine expression with methylation of single

CpGs in the promoter region, and then CpG with the best correlation was chosen.

Building phylogenetic trees
To build phylogenetic trees for each patient, we calculated the number of events that happened in each region of patients.We consid-

ered each event to happen only one time in patients and not to happen independently. We calculated three type of events:

1. Hypermethylation of promoter (>10% beta-value) of genes which promoter is not hypermethylated in normal TCGA samples

(6689 genes)

2. Protein affecting somatic mutations (376 individual mutations)
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3. Copy number alteration in chromosome bands (747 bands overall)

Events of each type were calculated separately, normalized (divided by maximum number events of this type) and then summed

up. The root of the patient’s tree was chosen as the common event for all samples in the patient. Branching point was chosen as the

maximum common event for pairs of samples of the patient.

QUANTIFICATION AND STATISTICAL ANALYSIS

For statistical analyses and plotting, python (version 3.7.5) and R (version 4.0.2) were used. The statistical information is detailed in

the text, figure legends, and figures. Significance values correspond to p values as follows: ‘-’ > 0.05, * <0.05, ** <0.01, *** <0.001. To

compare non-categorical values between groups we used the Mann-Whitney U test. To calculate correlation we used Spearman’s

correlations coefficient. Other statistical tests that were used are reported in the figure legends. In the boxplots, the upper whisker

indicates the maximum value or 75th percentile +1.5 IQR; the lower whisker indicates the minimum value or 25th percentile 1.5 IQR.

Survival differences were assessed using the log rank test CamDavidsonPilon/lifelines: v0.14.6 (Davidson-Pilon, 2019).
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